RICHIAMI DI CINEMATICA 2

TRATTO DA:

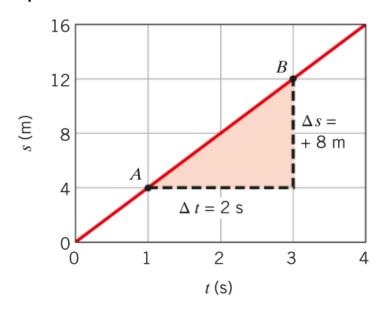
I Problemi Della Fisica - Cutnell, Johnson, Young, Stadler

Semplificazioni e approfondimenti rielaborati dal web

MOTO RETTILINEO UNIFORME

Un corpo si muove di moto rettilineo uniforme quando percorre una traiettoria rettilinea con velocità costante.

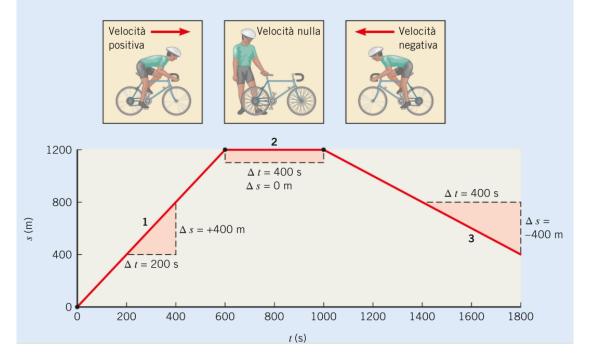
Se un corpo si muove di moto rettilineo uniforme con velocità v e all'istante iniziale t_0 = 0 s occupa la posizione s_0 , al generico istante t la sua posizione è data dalla formula


$$s = s_0 + vt$$

detta legge oraria del moto rettilineo uniforme.

Il grafico spazio-tempo del moto rettilineo uniforme

Il moto di un oggetto può essere descritto mediante una rappresentazione, detta grafico spazio-tempo, che contiene molte informazioni sul moto di un oggetto. Il rapporto $\Delta s/\Delta t$ è chiamato pendenza o **coefficiente angolare** della retta passante per A e B.


$$coefficiente\ angolare = \frac{\Delta s}{\Delta t} = \frac{8m}{2s} = 4m/s$$

ESEMPIO 1

Un ciclista percorre un rettilineo con velocità costante all'andata, poi si ferma per un certo tempo e poi viaggia con velocità costante al ritorno. I grafici spazio-tempo per le tre parti in cui si può dividere il viaggio sono quelli rappresentati nella figura 6.

▶ Determina le velocità del ciclista in ciascuna parte del viaggio.

ESEMPIO 2

Andrea e Carla abitano agli estremi di una via rettilinea, lunga 1200 m (figura 7). Decidono di incontrarsi e partono con la moto nello stesso istante. Andrea si muove con una velocità costante di 20 m/s e Carla con una velocità costante di 10 m/s.

▶ Dopo quanto tempo si incontrano e a quale distanza dalla casa di Andrea?

LA SOLUZIONE

Propongo una soluzione alternativa a quella del testo. Per stabilire dopo quanti secondi Andrea e Carla si incontrano, si può ragionare in modo alternativo: giacché i due viaggiano l'uno verso l'altro, si può pensare analogamente che Andrea viaggia a (20+10) m/s mentre Carla sta ferma. Per descrivere 1200 m viaggiando a un'andatura di 30 m/s, Andrea impiega

$$30m: 1s = 1200m: t \Rightarrow t = \frac{1200m \cdot 1s}{30m} \Rightarrow t = 40s$$

Ricordando che la velocità di Andrea in realtà è pari solo a 20m/s, si ha che dopo 40 secondi Andrea ha percorso 800m da casa

$$s = \frac{20m}{s} \cdot 40s \Rightarrow s = 800m$$

GIORGIO E IL DRONE PROGRAMMABILE

Giorgio possiede un sofisticato drone programmabile. Il drone ha un raggio d'azione che arriva fino a 100 m dai comandi. Giorgio lo programma per videoriprendere la propria abitazione. Il drone avvia la registrazione, come da programma, nel punto A. Dopo pochi secondi Giorgio è costretto a sospendere la registrazione per sostituire la batteria del drone. Fatta questa operazione riavvia il drone e completa la sua attività. Considerando, con buona approssimazione, rettilineo uniforme il moto del drone e osservando il suo comportamento nel grafico, rispondi alle domande seguenti:

- Quanto tempo il drone rimane spento per la sostituzione delle batterie?
- Spiega perché il drone non esce mai dal suo raggio d'azione
- Stabilisci in quali intervalli la velocità è positiva
- Calcola la velocità nei 5 intervalli
- Stabilisci il tempo di funzionamento del drone da fermo.

ACCELERAZIONE

L'accelerazione media è il rapporto tra la variazione di velocità e l'intervallo di tempo in cui è avvenuta: accelerazione media =

variazione di velocità

tempo impiegato

$$a_m = \frac{\Delta v}{\Delta t} \Rightarrow a_m = \frac{v_2 - v_1}{t_2 - t_1}$$

Unità di misura: metri al secondo quadrato (m/s^2)

L'accelerazione istantanea è il valore a cui tende l'accelerazione media quando l'intervallo Δt in cui è misurata la variazione di velocità diventa così piccolo da considerarsi praticamente nullo:

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t}$$

ESERCIZI

ESERCIZI

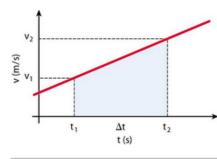
- Un velocista scatta dai blocchi di partenza e mantiene un'accelerazione di 8,1 m/s² per 1,2 s. Poi completa la gara con accelerazione nulla.
 - ► Calcola la sua velocità dopo 1,2 s e al termine della gara.
- Un motociclista viaggia con un'accelerazione costante di 2,5 m/s² diretta nella stessa direzione della velocità.
 - ▶ Quanto tempo impiega per passare da una velocità di 21 m/s a una velocità di 31 m/s e da una velocità di 51 m/s a una velocità di 61 m/s?
- Un atleta parte da fermo e accelera per 1,5 s; poi, nei successivi 1,2 s, mantiene un'accelerazione di 1,1 m/s². Al termine, la sua velocità è 3,4 m/s.
 - ▶ Qual è stata la sua accelerazione nei primi 1,5 s?

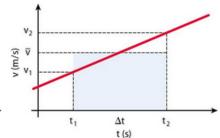
IL MOTO RETTILINEO UNIFORMEMENTE ACCELERATO

Un corpo si muove di moto rettilineo uniformemente accelerato quando percorre una traiettoria rettilinea con accelerazione costante.

Indicando con v_0 la velocità iniziale, con v la velocità al generico istante t, si ha la formula

$$v = v_0 + at$$


detta legge velocità-tempo del moto rettilineo uniformemente accelerato.


La **legge oraria** del moto rettilineo uniformemente accelerato permette di calcolare la posizione che un corpo occupa a un istante dato:

$$s = s_0 + v_0 t + \frac{1}{2} a t^2$$

VERIFICA DELLA LEGGE ORARIA

1 Il suo spostamento è uguale all'area del trapezio sotto il suo grafico velocità-tempo nell'intervallo Δt . Considerando le basi v_1 e v_2 e l'altezza Δt si ha $\Delta s = (1/2)(v_1 + v_2)\Delta t$. $oldsymbol{\overline{v}}$ Un corpo che si muove a velocità costante $oldsymbol{\overline{v}}$ nello stesso intervallo di tempo Δt compie uno spostamento $\Delta s = oldsymbol{\overline{v}} \Delta t$ uguale all'area del rettangolo colorato.

I due spostamenti sono uguali quando le due aree sono uguali:

$$ar{v}\,\Delta t\,=\,rac{1}{2}\,\left(v_1+v_2
ight)\Delta t$$

cioè quando

$$ar{v}=rac{1}{2}\,\left(v_1+v_2
ight)$$

Se il corpo è nella posizione s_0 all'istante t_0 = 0 s, la sua posizione s al generico istante t è

$$s = s_0 + vt$$

Nel moto uniformemente accelerato, la velocità media è data dalla (6):

$$ar v=rac{1}{2}\,\left(v_0+v
ight)$$

in cui la velocità iniziale è v_0 e la velocità all'istante t è v:

$$s \ = \ s_0 + ar{v}t \ = \ s_0 + rac{1}{2} \, \left(v_0 + v
ight) t$$

La velocità v è legata alla velocità iniziale v_0 e all'accelerazione a dalla (5) $v = v_0 + at$. Sostituendo nella formula precedente si ottiene:

$$s \ = \ s_0 + rac{1}{2} \ (v_0 + v)t \ = \ s_0 + rac{1}{2} \ (v_0 + v_0 + at)t \ = \ s_0 + rac{1}{2} \ (2v_0 + at) \ t$$

da cui deriva la (7):

$$s = s_0 + v_0 t + \frac{1}{2} a t^2$$

FORMULA «SENZA TEMPO»

Nel moto uniformemente accelerato è possibile calcolare la distanza percorsa quando sono noti i valori dell'accelerazione della velocità iniziale e finale. La legge è nota come spazio-velocità.

Dalla legge velocità-tempo, isoliamo t: $t=\frac{v-v_0}{a}$. Sostituiamo tale valore nella legge oraria del moto rettilineo uniformemente accelerato $s=s_0+v_0t+\frac{1}{2}at$. Si avrà

$$s = s_0 + v_0 \frac{v - v_0}{a} + \frac{1}{2} a \left(\frac{v - v_0}{a}\right)^2$$

Da cui

$$s - s_0 = \frac{v^2 - v_0^2}{2a}$$

FORMULA «SENZA TEMPO» ISTANTANEA

Si può giungere più rapidamente alla relazione spazio-velocità-accelerazione partendo dalla relazione $s-s_0=\overline{v}\cdot t$, che rappresenta la legge oraria del moto. Sostituendo alla velocità media $\overline{v}=\frac{v+v_0}{2}$ del moto rettilineo uniformemente accelerato e al tempo $t=\frac{v-v_0}{a}$ dello stesso

moto, si ha: $s - s_0 = \frac{v^2 - v_0^2}{2a}$